Castellano
Ingles

LaminarCover

Welcome to LaminarCover

In every professional time trial race, it is possible to check that the vast majority of the cyclist use disc rear wheels. 

The aerodynamic advantage of these kind of wheels is clearly demonstrated in wind tunnel. The physic fundament consists on oppose an aerodynamic, continuous surface instead of a group of spokes on movement that create turbulences.


However, the disc wheels has some disadvantages:


• High cost. 

• Not training wheels.

• Very fragile and high risk of fracture on traveling. 

• Tricky handling.

• Very high cost if you want to combine a disc Wheel with a Powertap power meter


They are some companies that sell plastic cover in order to convert a standard Wheel in a disc Wheel. However, this solution is heavy, fragile, instable and not very aesthetic.


IDEC, thanks to its vast experience designing, analyzing and manufacturing Components for aeronautics made in carbon fiber Composites, has developed carbon fiber made covers, taking advantage of the combination of high resistance carbon fiber and epoxy resin, achieving an aerodynamic solution:


• 10 times cheaper than a standard disc wheel.

• Valid for any standard wheel with normal hub or PowerTap Hub


After nearly 10 years of commercialization of Laminar Cover, we have improved the product with a new 3k fiber achieving even lighter covers.


Comparing Laminar Cover to plastic made wheels, Laminar Cover are: 


• 50g lighter, so 200g/pair for a 80 mm depth wheel 240g for 60 mm and 270g for 50 mm.

• Better behavior on movement.

• Better fit with the rim.

• Valve hole optimized.

• Better aesthetic (3K carbon fibre).









 Descripción


Laminar cover are two high strength (12k-HS) carbon fiber/epoxy composite made parts. Both covers are different due to the asymmetry of the rear hubs. In the drive side, the surface is has less curvature and with constant thickness.  IDEC also provides an extra part (also made in carbon fiber) to cover the valve hole in an easy-way with no loss of aerodynamics. The non-drive side, has more slope. The laminate has been optimized with a variable thickness; in order to stiff the necessary areas to avoid any bumps, but flexible enough to assure a proper fitting with the rim.

In addition, 10 more polyamide screws are provided (8+2) with a plain head but width enough t0 improve the fitting with the rim, with a minimum increase of weight.

Hed

TECHNOLOGY

 MATERIALS


Laminar cover are two high strength (3k-HS) carbon fiber/epoxy composite made parts.

Each pair is manufactured to

Both covers are different due to the asymmetry of the road rear hubs.

In the drive side, the surface has less curvature and constant thickness.  


On the other hand, the non-drive side, has more slope. The laminate has been optimized with a variable thickness; in order to stiff the necessary areas to avoid any bumps, but flexible enough to assure a proper fitting with the rim.


The valve hole to inflate the wheel is placed in the more adequate side (not the same for all the models) to avoid losses of stiffness and aerodynamic. 


In addition, 10 more polyamide screws are provided (8+2) with a plain head but width enough to improve the fitting with the rim, with a minimum increase of weight.


Laminar Cover are provided with matt finish, naked carbon and without any decal. 



 AERODYNAMICS


Cyclist produced power is used to overcome the following types of resistances:


  • 1.   Aerodynamic resistance.
  • 2.   Rolling resistance
  • 3.   Gravity resistance
  • 4.   Inertia.
  • 5.   Friction among mechanical elements.


Apart from the last one, all the other components can be evaluated mathematically.


   1.   Power necessary to overcome aerodynamic resistance can be evaluated as:





being,


ρ: air density (kg/m3).

Vg: cyclist speed (m/s).

Va: air speed incising in the cyclist, or speed relative to the air (Vg+ Vair frontal )(m/s)

Cd: aerodynamic coefficient.

A: Area that the cyclist exposes to the air. (m2)


    2. Rolling Resistance


Prolling = Crr x M x Vg;    Ec.2

being,


Crr: Rolling Coefficient

M: mass (bicycle +cyclist) (kg)

Vg: cyclist speed(m/s)


    3. Power to overcome Gravity


 Pg= M x g x Vg x sen (α);      Ec. 3







sin α= sin (arctag(Δh/ Δd));   Ec. 4


Para ángulos pequeños, el seno se puede aproximar a la tangente, por lo que


sin α= Δh/ Δd =slope;   Ec. 5



  4. Power to accelerate

P = 0,5 x (M + I/r2)x (Vf2- Vi2)/(tf-ti);   Ec. 6

being,


M: mass (bicycle +cyclist)  (kg)

I: Wheels Inertia. (kgm2)

r: Wheel external radius (m)

Vf: final speed after acceleration   (m/s).

Vf: initial speed before acceleration (m/s).


From all of them, quantitatively, aerodynamic resistance is the most important, but also the one that can be modified more easily.

For instance, if a cyclist rides with constant speed, in a plain road, without wind, and we consider  the mechanical the friction  as negligible:

with Crod de 0,0025, for a mass of 85kg, a speed 35 km/h, and a CdA of 0.41 the rolling resistance will be only 24,3w. That means, only a 9% of the total required power: 253w. As consequence, the 91% of the power is used to overcome the air resistance.



 YAW ANGLE


Companies like HED or Zipp have published tunnel test data where they evaluate the benefits of an aerodynamic Wheel. These benefits are strongly dependent of the yaw angle.

 

Yaw angle is the angle is not only the angle of incidence, but it depends also on:

 

 -cyclist speed.

-wind speed.

-wind angle.
















Vfrontal =Vwind x cos (α);      Ec. 8

Vlateral =Vwind x sin (α);     Ec. 9


 Vaparent= Vwind - Vfrontal.;     Ec. 10


In order to show the values of the yaw angle in typical conditions, the next figures are shown:

 

For a typical constant speed of 35 km/h, and two wind speeds: (10 y 20 km/h), the following yaw angles are obtained for different wind angles of incidence.
















It can be checked that for the specified conditions and a 10 km/h wind speed, yaw angle is always lower than 20°.


In the case of a 20 km/h wind speed, a yaw angle of 30°, can appear only if the angle of incidence is between 30° and 90°. In any case, a yaw of 35° is never reached.


Moreover, in the following graphic it is shown how the yaw angle varies with the wind speed when wind angle of incidence is 60°, when the cyclist speed is again 35 km/h.

















Finally, in the following graphic the conditions (wind speed and angle of incidence) where for a cyclist speed of 35 km/h the yaw angle are higher or lower than 20° are represented.


The wind tunnel data tests published are usually done only for yaw angles up to 20°. This does not mean that for higher yaw angles the performance of the wheels is necessary worse. Just there are not published data.


But what is demonstrated is the benefit of the aerodynamic wheels below 20°.

















 INPROVEMENT


Existen datos publicados por los fabricantes de ruedas más importantes del mundo, en los que se cuantifican estas ganancias. Sin embargo, al estar más expuesta al viento, una rueda delantera aporta más ventaja que la el mismo perfil en una rueda trasera.

 

Zipp presenta las mejoras de sus ruedas, cuantificadas en watios:


http://www.zipp.com/_media/pdfs/support/aero_edge09.pdf


Según sus datos, para un juego de ruedas de 58 mm de perfil (404) ahorra 23w. Los datos están referidos a un juego de ruedas base de Mavic Ksyrium. El ángulo aparente de viento es de 10 grados y la velocidad de 48km/h a 300 vatios.

 

Fuente:


http://www.amtriathlon.com/2008/04/impacto-aerodinmico-de-las-ruedas-zipp.html#ixzz0z7vvqxQs


Según Zipp, una lenticular trasera (Sub9) ahorraría otros 7w sobre el una trasera 404.

Más completa es la información que proporciona HED sobre sus ruedas, en las que aporta curvas del drag( (resistencia al aire en gf) en función del ángulo aparente, en un rango de 0º a 20º, que como se ha visto en el apartado El ángulo aparente, es un rango en el que se encuentran la mayoría de condiciones.
























Si se compara un disco HED Jet, con una rueda HED Jet 6 (perfil de 60 mm), se puede ver cómo con un ángulo aparente de 0º la diferencia es prácticamente nula. Sin embargo, con un ángulo aparente de 15º, se obtiene la máxima diferencia entre ambos que es de 120- 10 = 110 gramos de drag. Frente a una rueda convencional, la diferencia es de unos 200 g. O lo que es lo mismo, 10 y 20 w para una velocidad de 35 km/h.

 

Esto quiere decir que con un ciclista a 35 km/h, con un viento de 15 km/h que incide sobre el ciclista con un ángulo de 60º, se obtiene el máximo beneficio: ¿cuánto?

 

Para un ciclista a 35 km/h, (que pueden suponerle tener que aplicar 245 w para superar la  potencia aerodinámica, con una buena posición aerodinámica CdA=0.3), representa una ganancia de entre un 5 y un 10% en watios, que representan entre 0,6 y 1,2 km/h de aumento, que para una crono de 40 km suponen 70 y 140 segundos.

 

Para simplificar, dentro de este rango de velocidad y de estas potencias:

 

Por cada watio ahorrado, para 40 km, 6,5 seg de ahorro, por lo tanto:

 

En 40 km: 100 gramos drag -> 10 w -> 65 seg.

paero
Power
Yaw Angle
yaw vs wind angle
wind angle 60
yaw angle 20
graphic

COMPATIBILITY

Laminar Cover are compatible with vast majority of rim brake wheels. 

Minimum rim depth is 42 mm. 

Laminar Cover are not compatible with the following wheels:

•    Campagnolo Bora 80
•    Fulcrum 80
•    Disc Brake Wheels 

In any case, to avoid rubbing of the covers with the chain, it is necessary a gap of 5 mm between the biggest cog and the spokes. 

In case of doubt, please contact us by email

ASSEMBLY

Laminar cover Assembly

The Laminar Covers assemby is quite simple.


The pack includes:


     - One cover, plain, for the cassette side.

     - One cover, lens-shaped for the opposite side (not necessarily of the same diameter than the plain one)

     - 10 polyamide screws (male and female y hembra). 8 for the assembly and 2 spare screws.



The necessary tools are (not included)


     - a chain whip

     - cassette cog remover tool

     - wrench









The steps to install the laminar cover are the following:

Tools
Step001
Step002
Step003
Step004
Step005
Step006
Step007
Step008
Step009
Step010
Step011
Step012
Step013

GALLERY

Immobilienfotos
LaminarCover001
LaminarCover002
LaminarCover003
LaminarCover004
LaminarCover005
LaminarCover006
LaminarCover007
LaminarCover008
LaminarCover009
LaminarCover010
LaminarCover011
LaminarCover012
LaminarCover013
LaminarCover001LaminarCoverLaminarCover014
LaminarCover015
LaminarCover016
LaminarCover017
LaminarCover018
LaminarCover019
LaminarCover020
LaminarCover021
LaminarCover022
LaminarCover023
LaminarCover024
LaminarCover025
LaminarCover026
LaminarCover027
LaminarCover028
LaminarCover029
LaminarCover030
LaminarCover031
LaminarCover032
LaminarCover033
LaminarCover034
LaminarCover035
LaminarCover036
LaminarCover037
LaminarCover038
LaminarCover039
LaminarCover040
LaminarCover041
LaminarCover042
LaminarCover043
LaminarCover044
LaminarCover045
LaminarCover046
LaminarCover047

FAQS



1. ¿Can install Lamianr Covers in a front wheel?


Yes, but they are different from rear wheels covers, so you must indicate it in your order..


2. ¿Are my wheels compatible for Laminar cover installation?


Laminar Cover are specific for each model of wheel. They vary depending on the rim and the heb. We have a list of already demostrated as compatible wheels.  If your wheel is not in the list, please contact us.

 

Compatible wheels:

  • Bontrager 5.0
  • Bontrager Aeolus 6.5
  • Bontrager Aeolus 50
  • Bontrager Aura 50
  • Campagnolo Bora 35
  • Campagnolo Bora One/Ultra/Bullet 50
  • CBK 50
  • CBK 80
  • CBK 85
  • Citec Scorpo
  • Cole 50
  • Cole 85
  • Cole Titan Slite 58
  • Corima Aero 46
  • Cube hp aero 
  • Diabolic 50
  • Diabolic 60
  • Diabolic 88
  • Dr Wheel 60 
  • Dr Wheel 88 
  • Dr Wheel 90
  • DT Swiss 66
  • DT Swiss Oval 46
  • DT Swiss ARC 1400 Dicut
  • Easton EC 90 Aero 56
  • Easton EC 90 Aero 90
  • Enve 65 G3
  • Enve 65 PT
  • Enve 7 G3
  • Enve 7 DT 240s
  • Enve 95 G3
  • Erox 50
  • Evo  50
  • Evo 55
  • FFWD 4r 
  • FFWD 50
  • FFWD 60
  • FFWD 60 DT Swiss
  • FFWD 60 G3
  • FFWD 90 /DT Swiss 240
  • FFWD 90 G3
  • Flash Point 60
  • Fulcrum 50 xlr
  • Fulcrum Racing 4
  • Fulcrum 5
  • Giant SL  
  • Giant SLR
  • Gipiemme 60
  • HED 60 -650
  • HED Alps
  • HED C2 60
  • HED Stinger 60
  • HED 60 BLACK
  • HED 60 DT Swiss 350
  • HED C2 90/ JET 90
  • HED C2 90/ JET 90 G3
  • HED C2 90/ JET 90 GS
  • HED Stinger 7
  • HED Stinger 90 
  • HED JET 90 BLACK
  • Karbona 50
  • Karbona 85
  • Karbona Duetto
  • LEW Racing Pro vt1 45
  • Lightweight 50
  • Mavic Cosmic SR
  • Mavic Cosmic Carbon SL
  • Mavic Cosmic Carbon SLE - full carbon
  • Mavic Cosmic Carbon SLE - aluminio
  • Mavic Cosmic Carbon SLR 
  • Mavic Cosmic Carbon SLS
  • Mavic Cosmic Carbon SSC
  • Mavic Cosmic CXR 60
  • Mavic Comete Pro Carbon Exalith WTS
  • Mavic Cosmic Elite
  • Metta 50  
  • Metta 88 
  • Nesta 60
  • Novatec 85
  • Oval 985
  • OVC 85/Token 85
  • Profile Design 52
  • Progress 50 
  • Progress 85 
  • Progress 88  
  • Prolite 90
  • RCZ 50
  • Reynolds 46
  • Reynolds 66
  • Reynolds SLG 62 2014
  • Reynolds 90 Aero
  • Ritchey 88
  • Rolf 60
  • Roval 40
  • Roval 45
  • Roval 60
  • Roval CL 64 RAPIDE
  • Rothar 50
  • Rothar 60
  • Rothar 88
  • Rothar 88 Straight Pull
  • Rothar 88 GS
  • Scopre r5 55
  • Shamal
  • Speedsix 50
  • Speedsix 55 Straight Pull
  • Speedsix 80 Evo 24
  • Speedsix 80 Triefficiency 
  • Speedsix 80 Triefficiency - Straight pull
  • Speedsix 80 DT Swiss 350
  • Speedsix 85 Triefficiency Straight pull 240s
  • Speedsix 88
  • Speedsix Ultralight 9.0
  • Speedsix Ultralight
  • SRAM60
  • SRAM80
  • SSCAR 50
  • SSCAR 90 
  • Swift 88
  • Velocer 38 G3
  • Velocer 50
  • Velocer 88 F482SB
  • Vision 35
  • Vision 42
  • Vision Metron 81
  • Vuelta 50
  • Zero Cx 50 
  • Zero Cx 85 Poweray R23 
  • Zero Cx 90 Poweray R23 
  • Zipp 1080 2008
  • Zipp 1080 2010
  • Zipp 1080 PT
  • Zipp 1080 G3
  • Zipp 202 2010
  • Zipp 303 2008
  • Zipp 303 2010
  • Zipp 303 2010 Firecrest 11s
  • Zipp 303 Progress
  • Zipp 404 2008 hub 182
  • Zipp 404 2010 hub 188
  • Zipp 404 2011 Firecrest hub 188
  • Zipp 404 2013 Firecrest 11s v8
  • Zipp 404 2015 -177 Firecrest 11s 
  • Zipp 404 2014 v9
  • Zipp 404 DT Swiss
  • Zipp 404 G3
  • Zipp 404 buje Hope
  • Zipp 60 
  • Zipp 808 2008 hub 182
  • Zipp 808 2010 hub 188
  • Zipp 808 2011 Firecrest hub 188
  • Zipp 808 2013 Firecrest 11s v8
  • Zipp 808 2015 -177 Firecrest 11s
  • Zipp 808 2014 v9
  • Zipp 808 NSW - 2015 Cognition
  • Zipp 808 G3
  • Zipp 808 PT

ORDER

Price: 245€
(Shipping not included)

Laminar covers are not compatible with following bikes:


- Trek Speed Concept

- Blue Triad


Laminar covers are not compatible with following wheels:


- Campagnolo Bullet

- PlanetX 82

- Easton EC 90 Aero 90


If you have any doubt or need more information, don't hesitate to contact us:  EMAIL




For national shipping, it will be done by NACEX. The cost is 20 euros.


For international shipping, please ask for quotation.



In accordance with the provisions of Law 15/1999 of December 13, Protection of Personal Data, IDEC, SL informs you that the data provided through this form will be included in a file owned by IDEC , SL, being used to provide the information that you request or manage the services you require.

The sending of such data implies their consent to proceed with the processing of them, including their email address, for the purposes identified in the previous paragraph.

You may exercise your rights of access, rectification, cancellation and opposition with proof of identity, addressing IDEC, SL Albert Einstein, 29, 01510, Minor Miñano (Alava) or the email address

email

CONTACT

Idec logo
Parke logo
location
maps logo

IDEC, Ingeniería y Desarrollos en composites, S.L activities are focused on the new materials engineering, especially in advanced composites. IDEC develops its applications in composites taking the advantages that the new materials offer for different sectors (aerospatial, industries).

 

Where we are

 

    IDEC, Ingeniería y Desarrollos en composites, S.L, is sited in the Alava Technology Park.  Founded in 1992, the Technology Park of Álava is a bet of the of the Basque Public Administration (Basque Government, provincial Council of Álava and Town Council of Vitoria-Gasteiz) with the aim to diversify the Basque business network towards the company of the future, promoting the following features in the same environment:

 

   The unbeatable geographic location –at the best communication node with the roads N-1, N-240, the Vitoria/Eibar highway, the highway to Bilbao and the Airport– makes the Alava Technology Park a strategic place for corporate implementation and development.

email

Copyright © 2021

Este sitio web utiliza cookies. Consulta nuestra política de privacidad para obtener más información.